Análise dinâmica de volatilidade para os setores do mercado acionário brasileiro: uma aplicação do modelo mrs-garch<p> Dynamic analysis of volatility for the brazilian stock market sector: a aplication of mrs-garch model
Keywords:
Índices setoriais, Mercado brasileiro, Volatilidade, Regimes de volatilidadeAbstract
Nesse artigo, foi proposta uma análise da dinâmica de volatilidade nos setores do mercado acionário brasileiro, fazendo-se assim um estudo nos principais índices setoriais da BM&F Bovespa. Utilizou-se o modelo de regimes de Markov. Como resultados, inicialmente se observou a ausência de efeito alavancagem na maioria dos regimes das séries. Além disso, houve um predomínio de assimetria bem como a persistência de volatilidade para a maior parte dos regimes dos índices. Notou-se também uma grande similaridade entre o mercado brasileiro e o setor Financeiro, sendo ambos com regimes muito próximos, além de possuírem volatilidade com característica de maior persistência após o ano de 2013. Outra similaridade encontrada foi entre o setor de Utilidade Pública e o setor de Energia Elétrica, ambos caracterizados pela grande alternância entre os regimes estimados. Assim, foi possível concluir que cada setor do mercado acionário brasileiro tem um comportamento distinto, captado pelos diferentes regimes estimados.
References
AKAIKE, H. (1974). “A new look at the Statistical Model Identification”. IEEE Transactions on Automatic Control. 19(6), 716-723.
ALEXANDER, S, THIERRY, C. & KATERYNA, S. (2009). Volatility Models: from GARCH to Multi-Horizon Cascades. Documents de travail du Centre d’Economie de la Sorbonne. n 36 ISSN: 1955-611X.
ALIZADEH, A. H., NOMIKOS, N. K. & POULIASIS, P. K. (2008), A Markov regime switching approach for hedging energy commodities. Journal of Banking and Finance. n 32, p 1970-1983.
ARDIA, D., BLUTEAU, K., BOUDT, K. & CATANIA, L. (2017). “Forecasting Risk with Markov-Switching GARCH models: A Large-Scale Performance Study”. 3 January, 2018. Avaiable: https://ssrn.com/abstract=2918413 or http://dx.doi.org/10.2139/ssrn.2918413.
BAILLIE, R., CHUNG, C. F. & TIESLAU, M. A. (1996). Analyzing inflation by the fractionally integrated ARFIMA-GARCH model. Journal of applied Econometrics, 11, p. 23-40.
BOHL, M. T., SALM, C. A. & WILFLING, B. (2011). Do individual index futures investors destabilize the underlying spot market? Journal of Futures Markets. 31, 81-101.
BOLLERSLEV, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 31, 307-328.
BOLSA DE VALORES, MERCADORIAS E FUTUROS DE SÃO PAULO. (2018). Índices setoriais. 31 Dezembro, 2017. Disponível em: http://www.bmfbovespa.com.br/pt_br/produtos/indices.
CAI, J. (1994). A Markov model of unconditional variance in ARCH. Journal of Business and Economic Statistics 12, 309-316.
CHLEBUS, M. (2016). EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk. [Working paper nº6/2016 (197)]. University of Warsaw, Poland.
ENGLE, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 50, 987-1007.
FGV PROJETOS. (2014). Perfil da Cadeia Produtiva da Construção e da Indústria de Materiais e Equipamentos, da Abramat. 11 Janeiro, 2018. Disponível em: http://www.abramat.org.br/datafiles/publicacoes/materiais-equipamentos2014.pdf.
FILHO, F. H. B. (2017). A crise econômica de 2014/2017. Estudos avançados. 31, n.89, 51-60.
GLOSTEN, L. R., JAGANNATHAN, R. & RUNKLE, D. E. (1993). On the relation between expected value and the volatility of the nominal excess return on stocks. Journal of Finance. 48, 1779-1801.
GÜNAY, S. (2015). Markov Regime Switching Generalized Autorregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns. International Journal of Energy, Economics and Policy. 5(4), 979-985.
HAAS, M., STEFAN, M. & MARC S. P. (2004). A new approach to Markov-switching GARCH models. Journal of Financial Econometrics. 2, 493-530.
HAMILTON, J. D. (1988). Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates. Journal of Economic Dynamics and Control. 12, 385-423.
HAMILTON, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica. 57, 357-384.
HAMILTON, J. D. & SUSMEL, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics. 64, 307-333.
HALL, H. (2014). Political Economy Principles in Europe may be changed by the Economic Crisis Governance. 31 December, 2017, Avaiable: http://speri.dept.shef.ac.uk/wp-content/uploads/2013/06/SPERI_Paper_Hacker.pdf.
HENRY, O. T. (2009). Regime switching in the relationship between equity returns and short-term interest rates in the UK. Journal of Banking and Finance. 33, 405-414.
KLAASSEN, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. In Advances in Markov-Switching Models. Empirical Economics. 27, 223-254.
KRITZMAN, M., PAGE, S. & TURKINGTON, D. (2012). Regime shifts: Implications for dynamic strategies. Financial Analysts Journal. 68(3), 22-39.
MARCUCCI, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics & Econometrics. 9, 1558-3708.
NELSON, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica. 59, 347-370.
PEREIRA, A. P., PALMUTI, C., JÚNIOR, P. S. P., SILVA, S. W. & ALVES, A. P. (2017). A influência dos índices setoriais da bolsa de valores sobre o índice IBOVESPA: uma análise estatística-econométrica no período 2015 e 2016. In: XX SEMEAD Seminários em Administração. ISSN 2177-3866.
REHER, G. & WILFING, B. (2011). Markov-Switching GARCH models in finance: a unifying framework with an application to the German stock market. Masters dissertation. University of Münister, WWU, Germany.
SCHWARTZ, G. (1976). Estimating the Dimension of a Model. The Annals of Statistics. Vol. 6, No. 2. pp. 461-464.
WENNSTRÖM, A. (2014). Volatility Forecasting Performance of GARCH type volatility models on Nordic equity indexes. Master of Science. Department of Mathematics. Royal Institute of Technology, KTH, Stockholm, Sweden.
WILFLING, B. (2009). Volatility regime-switching in European exchange rates prior to monetary unification. Journal of International Money and Finance. 28, 240-270.
ZAKOIAN, J. M. (1994). Threshold heteroscedastic models. Journal of Economic Dynamics and Control. 18, 931-955.
ZHANG, Y., YAO, T. & HE, L. (2015). Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models? 03 January, 2018. Avaiable: https://www.researchgate.net/publication/286301906_Forecasting_crude_oil_market_volatility_can_the_Regime_Switching_GARCH_model_beat_the_singleregime_GARCH_models.
ZHANG, Y. & WANG, J. (2015). Exploring the WTI crude oil price bubble process using the Markov regime switching model. Physica A: Statistical Mechanics and its Applications. 421, 377-387.
ZHANG, Y. & ZHANG, L. (2015). Interpreting the crude oil price movements: evidence from the Markov regime switching model. Applied Energy. 143, 96-109.
Published
How to Cite
Issue
Section
License
Definitions. The following terms shall be used as Agreement for this submission.
Notice: As part of the process for submission, the authors are obliged to verify the submission conformity in relation to all items listed in this requirement. The submissions which are not in accordance with the rules will be sending back to the authors.
1. It is stated that are the exclusive owners and holders of copyrights and content submitted to be published and in this sense agree with free of rights which get the first edition to the publisher and publication to the publishing house of Universidade Estadual do Centro-Oeste – Publishing UNICENTRO, by means of Capital Científico Journal with the work licensed at the same time under Creative Commons Attribution License, allowing the content sharing with the recognition of the authorship and initial publication of this Journal.
In this way, the author (authors) authorizes (they authorize) that Publishing UNICENTRO, through the Capital Científico Journal (Electronic-On Line or Printed) the publication of this content by printed and electronic, also for communication to the public, including the public exhibition, reproduction by any process, distribution, and others systems of display or exposure to public, by any ways, medias and supports.
2. It is declared that the responsibility by the originality of the work, and it is declared that its content was not published partially or in parts by a second journal, as well is not being considered for publication in another journal or publisher in any form of media. The authors are responsible by the information accuracy as well the data contained in the submitted content.
3. It is declared that in the text process of writing it was observed with accuracy the rules referred to citations and references to research sources used, according to the Brazilian law 9.610/ 1988 (law of Author’s rights) as well as it was observed the dispositions contained in the Committee and Ethic reference to the object researched.
4. It is declared that the authors rights was acquired reserved to the indirect owners when in the in the work there are remissions, translations, collections, inserted photos and images, which the property is not owned by the authors, as well as, authorizations with the direct owners or titular from registered, names of organizations or companies that are mentioned.
5. It is declared and that authors are obliged to indemnify UNICENTRO or its publishers, in the case of suffering any material or moral injury in consequence of the law or extra law acts promoted by third ones in reason of its publication departing from the published work.